7 research outputs found

    Online Model Evaluation in a Large-Scale Computational Advertising Platform

    Full text link
    Online media provides opportunities for marketers through which they can deliver effective brand messages to a wide range of audiences. Advertising technology platforms enable advertisers to reach their target audience by delivering ad impressions to online users in real time. In order to identify the best marketing message for a user and to purchase impressions at the right price, we rely heavily on bid prediction and optimization models. Even though the bid prediction models are well studied in the literature, the equally important subject of model evaluation is usually overlooked. Effective and reliable evaluation of an online bidding model is crucial for making faster model improvements as well as for utilizing the marketing budgets more efficiently. In this paper, we present an experimentation framework for bid prediction models where our focus is on the practical aspects of model evaluation. Specifically, we outline the unique challenges we encounter in our platform due to a variety of factors such as heterogeneous goal definitions, varying budget requirements across different campaigns, high seasonality and the auction-based environment for inventory purchasing. Then, we introduce return on investment (ROI) as a unified model performance (i.e., success) metric and explain its merits over more traditional metrics such as click-through rate (CTR) or conversion rate (CVR). Most importantly, we discuss commonly used evaluation and metric summarization approaches in detail and propose a more accurate method for online evaluation of new experimental models against the baseline. Our meta-analysis-based approach addresses various shortcomings of other methods and yields statistically robust conclusions that allow us to conclude experiments more quickly in a reliable manner. We demonstrate the effectiveness of our evaluation strategy on real campaign data through some experiments.Comment: Accepted to ICDM201

    Sparse dictionary methods for EEG signal classification in face perception

    No full text
    This paper presents a systematic application of machine learning techniques for classifying high-density EEG signals elicited by face and non-face stimuli. The two stimuli used here are derived from the vase-faces illusion and share the same defining contours, differing only slightly in stimulus space. This emphasizes activity differences related to high-level percepts rather than low-level attributes. This design decision results in a difficult classification task for the ensuing EEG signals. Traditionally, EEG analyses are done on the basis of signal processing techniques involving multiple instance averaging and then a manual examination to detect differentiating components. The present study constitutes an agnostic effort based on purely statistical estimates of three major classifiers: L1-norm logistic regression, group lasso and k Nearest Neighbors (kNN); kNN produced the worst results. L1 regression and group lasso show significantly better performance, while being abl e to identify distinct spatio-temporal signatures. Both L1 regression and group lasso assert the saliency of samples in 170ms, 250ms, 400ms and 600ms after stimulus onset, congruent with the previously reported ERP components associated with face perception. Similarly, spatial locations of salient markers point to the occipital and temporal brain regions, previously implicated in visual object perception. The overall approach presented here can provide a principled way of identifying EEG correlates of other perceptual/cognitive tasks
    corecore